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LETTER TO THE EDITOR 

The osmotic pressure of a two-dimensional disordered foam 

S Hutzler and D Weaire 
Physics Department, Trinity College. Dublin, Ireland 

Received 4 September 1995 

Abstract. The osmotic pressure for a disordered No-dimensional foam or emulsion is 
evaluated by a realistic “puter simulation over the whole range of the liquid tiaction. The 
data are consistenl with a quadratic approach lo zero as the liquid fraction nears the limit of 
stabilily of the froth. 

The concept of osmotic pressure in a foam can be explained by a simple gedanken 
experiment. In the extreme case of a wet foam, the bubbles are spheres (in 3D) or circles 
(in 2D) that are touching each other. Extracting the liquid causes the bubbles to deform, 
increasing their surface area and hence the energy of the system. Thus there is a force 
necesssuy to counter the increasing bubble-bubble interaction when the foam is drained; the 
force per unit area (or unit length in 2D) is called the osmotic pressure n. It is zero in the 
extreme h i t  of a wet foam and goes to infinity for a dry foam for which the bubbles have 
polyhedral shapes. 

~ ~ 

The osmotic pressure (in 3D) may be defined as 

where F is the free energy of the foam (that is its surface energy), V is the total volume of 
the sample and V, the volume of the gas in the sample. Note that Vi is kept fixed when the 
derivative is taken, assuming an incompressible gas. With small changes of terminology 
the same definition applies to an emulsion in which droplets of one liquid are dispersed in 
another liquid. 

In this letter we shall restrict ourselves to the analysis of two-dimensional foams. These 
can be approximated experimentally by squeezing a foam between two glass plates. In 
equation (1) F ,  V and V, then have to be replaced by the line energy E ,  the total area A 
of the sample and the area of gas in the sample A, respectively. 

Princen [l] calculated the osmotic pressure for an ordered (monodisperse) two- 
dimensional system analytically 

in terms of the line tension 0, the radius of an uudeformed bubble R and the gas fraction 
of the foam a. The critical packing fraction QC denotes the value of the gas fraction at 
which the foam disintegrates into isolated bubbles. For the ordered hexagonal 2D foam, it 
is given by 
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Integration of equation (2) according to equation (1) then gives the work A E  per unit 
area of foam (this area being evaluated at Q = QE), necessary to compress the foam from 
Qc to Q. This leads to 

AE(Q,  U ,  R )  = 

The osmotic pressure as a function of the liquid fraction @I = 1 - Q according to 
equation (2) is shown in figure 1 (solid line), where we used the following normalization: 
E*; = lIA”’. Here, A is the area of a bubble. A = zR2 .  
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Figure 1. The osmotic pressure n* for ordered and disordered two-dimensional foams. The 
solid line represents Princen’s normalized analyticnal result for ordered foam and the symbols 
represent simulation data for a disordered foam. 

Using the decoration theorem of Bolton and Weaire 121 it may be shown that equation (2) 
is also valid for a disordered froth to within a very good approximation, so long as the plateau 
borders remain three sided. This will generally hold over some range close to the dry foam 
limit Q l  = 0. Our aim was to extend Princen’s results to disordered wet foams where 
numerical methods have to be applied. There are experimental measurements of osmotic 
pressure as a function of liquid fraction in foams [3] and emulsions [4,5]. Inasmuch as these 
we made on three-dimensional systems, there can be no immediate comparison with our 
results. Nevertheless, they may be useful in developing a fuller theoretical understanding 
of the problem posed by these measurements [ 5 ] .  

We used a computer program developed by Bolton and Weaire 12, 61 to simulate two- 
dimensional liquid foams. Figure 2 shows examples of 150-cell systems with liquid fractions 
Q, = 0.12 and 0, = 0.02 respectively. A straightforward approach to calculating the 
osmotic pressure would be to take the numerical derivative of the line energy of the cell 
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Figure 2. Examples of two-dimensional disordered foams with (a) liquid fraction @I = 0.12, 
150 cells, (b) liquid fraction @I = 0.02, 150 cell% 

system as a function of the gas or liquid fraction; see equation (1). The line energy is 
proportional to the sum of all the arc-lengths, a quantity that is readily evaluated by our 
program. This method is not very satisfactory in practice because the topological changes 
that inevitably occur as we change the liquid fraction ace associated with discontinuities 
in the total energy. The correct interpretation of equation (1) is in terms of the derivative 
taken between such discontinuities. 

We therefore calculated the stress components T~~ and ryy directly by summing up 
the force components (that is pressure and surface tensions) acting on the boundaries 
perpendicular to the x and y directions respectively. The osmotic pressure is then given by 

(4) 

where ppb  is the average plateau border pressure. We then normalize our results by 
ll* = ilz”’, where 

Similar methods have been used by us to calculate the shear modulus as a function of the 
gas fraction in a disordered two-dimensional foam [7]. We found it to fall linearly towards 
zero at the point at which the bubbles come apart. This result still lacks any complete 
or rigorous theoretical derivation. However, if a loose analogy with rigidity percolation 
[SI is accepted, it leads to the expectation of a similar h e a r  variation of all the elastic 
constants and the bulk modulus [9]. As the latter corresponds to the first derivative of the 
osmotic pressure with respect to 4, one would expect a quadratic variation of the osmotic 
pressure, as a function of Q - 4c. For a disordered foam, the gas fraction at which the 
foam separates into isolated bubbles (the rigidity loss transition) is given as Oc cz 0.84 by 
Bolton and Weaire [SI. 

Figure 1 shows the results of~our simulation for three different samples consisting of 100, 
150 and 200 cells respectively. The osmotic pressure was calculated by use of equation (4). 
Figure 3 shows that the osmotic pressure of a disordered system ll, can be fitted very well 
to a quadratic in the wet limit 

( 5 )  

I n = 5 (Txx f T y y )  - P p b  

denotes the mean cell area. 

2 ndi = u(b - 4,) . 
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Figure 3. Close to he rigidity loss transition, the osmotic pressure for disordered system can 
be fitted to a quadratic (see lex& Data shown are from 100.. 150- and 200-eell systems. 

The parameters a and b were determined to be a 2 37, b : 0.18 in obtaining the fitted 
curve shown. Note that the parameter b represents the value of the critical liquid fraction 
which was previously given by = 1 - Q,< N 0.16. We associate this discrepancy with 
the uncertainty of our extrapolation, as follows. 

The shear modulus G as a function of Q, can be described over the whole range of 
gas fractions by the functional form G = c - d * 4; where c and d are fit parameters 171. 
This gives @ , I  Y 0.16. For low liquid fractions however, G should strictly speaking be 
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F i m  4. An increase followed by a decrease of the liquid fraction leads to a more ordered and 
energetically favoured system. Data are for a 150-cell system. (a) The normalized free energy 
E* = E?2/A,o,,m is plotted relative to its value E; for separated bubbles. (b) Initial and 
final configuration of the foam (c) The second moment of the distribution of number of cell 
sides M. 

constant (decoration lemma) and hence it might seem better to fit G to a linear decrease 
for @I > 0.04, that is, when the first four-sided plateau borders occur. The critical liquid 
fraction is then determined as QC,, N 0.18, in agreement with our results gained from the 
osmotic pressure calculations. 

The limited range of the calculations makes the claimed critical behaviour quite tentative 
and we cannot exclude power laws of the form of equation (5), with indices fl  close to two. 
Similarly, the recent experiments in three dimensions [5] cannot be used to identify the 
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critical index with much precision, although it was claimed that +9 N 1. Another recent 
simulation [lo] in two dimensions with a more approximate model has been interpreted in 
terms of +9 = 3/2. It is not possible to reconcile or relate these various claims at this stage. 

An interesting extension of our simulations is the following. After having increased 
the liquid fraction Q i  in order to get from a dry to a wet foam, we decreased Q j  to zero 
again and then increased it again to values close to Ql.c .  (We encountered computational 
difficulties in equilibrating the structure in the extremely wet regime.) 

In figure 4(a) we plotted the normalized energy of the sample E* = Ex”2/Afo, ,m 
during this cycle, relative to its value E; for separated bubbles; Afonm is the total area of 
the compressed foam. (Note that Princen computes the energy per area of uncompressed 
foam.) It can be seen that the system finds a state of lower energy as a consequence of this 
cycle. This is due to the increased order in the final state; see figure 4(b). The osmotic 
pressure. however, is not significantly affected by the cycling. In figure 4(c) we display the 
variation of the second moment p2 of the distribution of the number of sides of a cell about 
its mean. This is a reminder, should this be necessary, that the structure, and therefore the 
properties, of a disordered foam can be strongly dependent upon its previous history. 
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